SEJITS and the quest for
ubiquitous parallel software

Tim Mattson
Intel Labs
timothy.g.mattson@intel.com

Kayaker: Tim Mattson. Photo by P. Welle.

OPL Pattern Language (keutzer & Mattson 2010) /N

Applications
"¢ > T
Structural Patterns Model-View-Controller Computational Patterns Unstructured-Grids
Pipe-and-Filter Iterative-Refinement Graph-Algorithms Structured-Grids
Agent-and-Repository Map-Reduce Dynamic-Programming Graphical-Models
Process-Control Layered-Systems Dense-Linear-Algebra I (U PTG
S Li Aloeb Backtrack-Branch-and-Bound
Event-Based/Implicit-Invocation Puppeteer parse-Linear-Algebra
N-Body-Methods
Arbitrary-Static-Task-Graph Circuits
Finding Concurrency Patterns Soectral-Method
Task Decomposition Ordered task groups HEEER
Data Decomposition I Data sharing Monte-Carlo
Design Evaluation

Parallel Algorithm Strategy Patterns Discrete-Event

Task-Parallelism Data-Parallelism Geometric-Decomposition
Divide and Conquer Pipeline Speculation

Implementation Strategy Patterns

Shared-Queue Distributed-Array
SPMD Fork/Join Loop-Par. Shared-Map Shared-Data
Kernel-Par. Actors Workpile Parallel Graph Traversal
Program structure Vector-Par Algorithms and Data structure

Parallel Execution Patterns

Coordinating Processes
Stream processing Task Driven Execution

Shared Address Space Threads

Concurrency Foundation constructs (not expressed as patterns)

Thread/proc management Communication Synchronization
Source: Keutzer and Mattson Intel Technology Journal, 2010

. OPL Pattern Language /N

Applications

N

L <
Structural Patterns Model-View-Controller apal Patterns Unstructured-Grids
Pipe-and-Filter I Iterative-Refinemen ‘ Graph-Algorithms [emmtagied-Grids
Agent-and-Repository Map-Reduce Dynamic-Programming Graphical-§lodels
Process-Control Layered-Systems Dense-Linear-Algebra G A TGS
’ S Li Aloeb Backtrack-ranch-and-Bound

Event-Based/Implicit-Invocation Puppeteer parse-Linear-Algebra

N-Body-Mathods
Arhitrarv-Static-Task-Granh

Circuits
i / Patterns
Patterns travel together ... informs / Patterns SpectralJlethods

framework design (a pathway for cactus —l—> Ordered task groups Monte-Ghrlo

. Data sharing
is shown here) gn Evaluation

Parallel Algorithm Strategy Patterns Discrete-Event

Task-Parallelism | Geometric-Deagfposition

Divide and &g speculation

Shared-Queue Distributed-Array
Fork/Join Shared-Map Shared-Data
Actors pue Parallel Graph Traversal
Vector-Par

Algorithms and Data structure

"SMmgg Address Space Threads |

Execution

Distributed memory cluster [expressed as patter=«
and MPP computers comm Multiprocessors (SMP and NUMA)

nd Mattson Intel Technology Journal, 2010

JUUILT., DNTULZLTT

\
\

- /N
How do we get performance from frameworks? .~

/

=

m SEJITS: Scalable, embedded, just in time specialization

Code with a high level language (e.g. Python or Ruby) that is mapped
onto a low level, efficiency language (e.g. OpenMP/C or CUDA).

SEJITS system to embed optimized kernels specialized at runtime to
flatten abstraction overhead and map onto hardware features.

. N
Productivity Layer Code JIT Specialization

J

[4‘ 2

SEJITS comes

from Armando i e » Parallel bindings

Fox’s group at UC igh-level interpreter " | J

Berkeley. T e . i Yy \
——> CODE " Parallel Platform

-------- > DATA /

Bryan Catanzaro, Armando fox, Yunsup Lee, mark Murphy and Kurt Ketuzer of UC Berkeley, Mickael Garland of NVIDIA

Proof of Concept project: Shape Fitting

How do these two shapes
fit together? How do these two shapes fit

together? Not as obvious when dealing
with complex, 3D molecular structures.

Why does it matter how molecules
fit together? Because most biological
processes involve molecular binding.

Pretty obvious.

Henry Gabb: productivity, application programmer
Tim Mattson: specializer writer

Proof-of-Concept Results

* For the productivity programmer:
» Pattern-based design of application
 Significantly easier development:

 Original version: 4,700 lines of C
and Perl
* New version: 500 lines of Python
» Performance (16-core Xeon):
« Serial: ~24 hours
« Parallel: ~3 hours

Kayaker: Pat Welle. Photo by T. Mattson.

* For the specializer writer
« Documentation was a work in progress. Training materials inadequate

 Error feedback did not track original source code ... required a SEJITS
expert to find and fix bugs.

« Assumed specializer writer was a hardcore python programmer (scipy,
numpy, etc.).

My Ah-ha moment!!!!

" JEE
FI'Dock Protein Docking

« Independent dockings in 3D search space FTDock Specializer Core
+ Requires one-line change to application. class FtdockMRJob(AspMRJob):

- e 45 y def mapper(self, coords, ignored):
Achieves 290x speedup on 450 cores sl s e limalinldigs

score = ftdock(*coords, *args)
yield 1, score

FTDock Throughput vs. Problem Size

== w= Sorial (Carver) == == Serial (Amazon) == == Serial (3.20 GHz Core i7)
s Hadoop (Carver, 450 cores) === Hadoop (Amazon, 120 cores)

89.89
8
&
5
2 5
S
s
2 —gv—-._———x.oxs
g‘ 0.5
£ ———~*‘_0_305
8 64 216 729 1331 4096 9261 29791 68921 226981 753571
Problem Size
iy iy by iy iy iy

Source: M. Driscoll, E. Georgana, P. Koanantakool, 2012 ParLab winter Retreat.

The Ah-ha moment for others at Intel

IS A

Speaker

- Miarization

EE

= Speaker Diarization ... 50 lines of python/Pycasp code!lll
Highly productive programming model

» Average faster-than-real-time factor &error rate
» Averagedacross 12 meetings (AMI corpus) [1]
» |ntel Westmere

Implementation

Diarization Error

Faster-than-real-

Rate time factor
State-of-the-art C++ ~2204 1X
PyCASP 24.7% 56X

... and it could generate CUDA too if you wanted to run on a GPU (where it was
2X faster than the CPU)

[1] E. Gonina, G. Friedland, H. Cook and K. Keutzer. “Fast Speaker Diarization Using a High-Level
Scripting Language®™ In Proceedings of IEEE Workshop on Automatic Speech Recognition and
Lnderstanding (ASRU), Dec 11-15, 2011, Waikoloa, Hawai

Source: Kurt Keutzer UCB, non-numeric computing workshop, July 2oaz g

The future of SEJITS

« Patterns - frameworks - SEJITS works as advertised.
— I'm excited and eager to watch where you go with SEJITS.

« But ... Great technology has users, not collaborators.
— SETJITS is in the collaborator stage. It needs users.

« SEJITS will disappear into the dustbin of computing
history joining numerous parallel computing failures unless:
— Show that one can build frameworks of reusable specializers.
— Make SEJITS easier to use for the specializer writer.
— Allow programmers isolated from the SEJITS team to use it.

 We don't need a product ... we need a research prototype
to validate the idea for application developers.
— You aren’t there yet.

