
1 1

SEJITS and the quest for
ubiquitous parallel software

Tim Mattson

Intel Labs

timothy.g.mattson@intel.com

Kayaker: Tim Mattson. Photo by P. Welle.

2

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

OPL Pattern Language (Keutzer & Mattson 2010)

Task-Parallelism

Divide and Conquer
Data-Parallelism

Pipeline

Discrete-Event

Geometric-Decomposition

Speculation

SPMD

Kernel-Par.
Fork/Join

Actors

Vector-Par

Distributed-Array

Shared-Data

Shared-Queue

Shared-Map

Parallel Graph Traversal

Coordinating Processes

Stream processing

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structure Program structure

Synchronization

Loop-Par.

Workpile

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition

Data Decomposition

Ordered task groups

Data sharing

Design Evaluation

Finding Concurrency Patterns

Source: Keutzer and Mattson Intel Technology Journal, 2010

3

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Puppeteer

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-Invocation

Arbitrary-Static-Task-Graph

Unstructured-Grids

Structured-Grids

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Structural Patterns Computational Patterns

OPL Pattern Language

Task-Parallelism

Divide and Conquer
Data-Parallelism

Pipeline

Discrete-Event

Geometric-Decomposition

Speculation

SPMD

Kernel-Par.
Fork/Join

Actors

Vector-Par

Distributed-Array

Shared-Data

Shared-Queue

Shared-Map

Parallel Graph Traversal

Coordinating Processes

Stream processing

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Communication

Shared Address Space Threads

Task Driven Execution

Algorithms and Data structure Program structure

Synchronization

Loop-Par.

Workpile

Thread/proc management

Concurrency Foundation constructs (not expressed as patterns)

Task Decomposition

Data Decomposition

Ordered task groups

Data sharing

Design Evaluation

Finding Concurrency Patterns

Source: Keutzer and Mattson Intel Technology Journal, 2010

Patterns travel together … informs

framework design (a pathway for cactus

is shown here)

Distributed memory cluster

and MPP computers Multiprocessors (SMP and NUMA)

How do we get performance from frameworks?

Bryan Catanzaro, Armando fox, Yunsup Lee, mark Murphy and Kurt Ketuzer of UC Berkeley, Mickael Garland of NVIDIA

 SEJITS: Scalable, embedded, just in time specialization

 Code with a high level language (e.g. Python or Ruby) that is mapped

onto a low level, efficiency language (e.g. OpenMP/C or CUDA).

 SEJITS system to embed optimized kernels specialized at runtime to

flatten abstraction overhead and map onto hardware features.

SEJITS comes
from Armando
Fox’s group at UC
Berkeley.

Framework
API

How do these two shapes
fit together?

Pretty obvious.

How do these two shapes fit
together? Not as obvious when dealing
with complex, 3D molecular structures.

Why does it matter how molecules
fit together? Because most biological
processes involve molecular binding.

Proof of Concept project: Shape Fitting

5

Henry Gabb: productivity, application programmer
Tim Mattson: specializer writer

Proof-of-Concept Results

6

• For the specializer writer

• Documentation was a work in progress. Training materials inadequate

• Error feedback did not track original source code … required a SEJITS

expert to find and fix bugs.

• Assumed specializer writer was a hardcore python programmer (scipy,

numpy, etc.).

• For the productivity programmer:

• Pattern-based design of application

• Significantly easier development:

• Original version: 4,700 lines of C

and Perl

• New version: 500 lines of Python

• Performance (16-core Xeon):

• Serial: ~24 hours

• Parallel: ~3 hours

Kayaker: Pat Welle. Photo by T. Mattson.

My Ah-ha moment!!!!

7 Source: M. Driscoll, E. Georgana, P. Koanantakool, 2012 ParLab winter Retreat.

The Ah-ha moment for others at Intel

The future of SEJITS

• Patterns  frameworks  SEJITS works as advertised.

– I’m excited and eager to watch where you go with SEJITS.

• But … Great technology has users, not collaborators.

– SETJITS is in the collaborator stage. It needs users.

• SEJITS will disappear into the dustbin of computing

history joining numerous parallel computing failures unless:

– Show that one can build frameworks of reusable specializers.

– Make SEJITS easier to use for the specializer writer.

– Allow programmers isolated from the SEJITS team to use it.

• We don’t need a product … we need a research prototype

to validate the idea for application developers.

– You aren’t there yet.

9

